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“Burnt-bridge”’ mechanism of molecular motor motion
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Motivated by a biased diffusion of molecular motors with the bias dependent on the state of the substrate, we
investigate a random walk on a one-dimensional lattice that contains weak links (called “bridges”) which are
affected by the walker. Namely, a bridge is destroyed with probability p when the walker crosses it; the walker
is not allowed to cross it again and this leads to a directed motion. The velocity of the walker is determined
analytically for equidistant bridges. The special case of p=1 is more tractable—both the velocity and the

diffusion constant are calculated for uncorrelated locations of bridges, including periodic and random

distributions.
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I. INTRODUCTION

The motion of a particle depends on the medium in which
it moves. Often the inverse is also true, that is, the particle
motion changes the medium. Such problems are character-
ized by an infinite memory—not only the present position of
the particle, but the entire past determines the future—and
they are usually extremely difficult. Perhaps the most famous
example is the self-avoiding walk, which is a random walk
on a lattice with the restriction that hops to already visited
sites are forbidden [1]. Similarly, in a path-avoiding walk, a
random walker is not allowed to go over already visited
links. A generalization of the path-avoiding walk assumes
that the medium is a lattice with two kinds of links, strong
and weak: strong links are unaffected by the walker while
weak links, called bridges, “burn” when they are crossed by
the walker. The random walker is not allowed to cross a
burnt-bridge [2,3]. Obviously the burnt-bridge model re-
duces to the path-avoiding walk if all links are weak.

In this paper, we investigate a stochastic burnt-bridge
model [4] in which the crossing of an intact bridge leads to
burning only with a certain probability p, while with prob-
ability 1—p the bridge remains intact. The stochastic burnt-
bridge model is a simplification of models proposed to
mimic classical molecular motors [2,3] with energy coming
from adenosine triphosphate (ATP) hydrolysis [5]. (There
are, of course, various other models describing molecular
motors; see, e.g., Refs. [6-12].) A more direct biological ap-
plication of the stochastic burnt-bridge model has been re-
cently suggested by Saffarian et al. [13], who shows that
experimental results on the motion of the activated collage-
nase (MMP-1) along collagen fibrils are consistent with
Monte Carlo simulations of a two-track stochastic burnt-
bridge model with weakly coupled tracks (the hopping rate
over the rungs between the tracks is small compared to the
hopping rate along the tracks). The collagenase motor activ-
ity is of great interest since it affects various physiological
and pathophysiological processes (e.g., to wound healing and
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tumor progression). This inspires theoretical work on the sto-
chastic burnt-bridge model.

We shall focus on the one-track stochastic burnt-bridge
model. Forbidding the crossing of the burnt-bridges essen-
tially imposes a bias, and the goal is to compute the velocity
v(c,p) and the diffusion coefficient D(c,p) as functions of
the density of bridges ¢ and the bridge-burning probability p.
The velocity and the diffusion coefficient also depend on the
positioning of the bridges. We shall tacitly assume that the
bridges are placed without correlations, and we shall often
specify our findings to two particularly interesting and natu-
ral positioning of the bridges—a regular equidistant spacing
and a random distribution.

The rest of this paper is organized as follows. In the next
section, we describe various versions of the burnt-bridge
model and outline the major results. Section III is devoted to
the derivation of the velocity and the diffusion coefficient for
the burnt-bridge model and a modified burnt-bridge model.
In Sec. IV, the stochastic burnt-bridge model is studied, and
the velocity is computed for equidistant bridges. Finally, a
few open questions are discussed (Sec. V). Various calcula-
tions are relegated to the Appendixes.

II. MODELS AND MAIN RESULTS

The definition of the burnt-bridge model is sketched in
Fig. 1. The particle undergoes a discrete time nearest-
neighbor random walk on a one-dimensional lattice that con-
tains two kinds of links, strong and weak. The weak links are
called bridges and, when the walker crosses a bridge, it gets
burnt. A burnt-bridge cannot be crossed again: the walker
next to a burnt-bridge always steps away from it. No bias is
initially imposed as the hopping rates to the right and left are
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FIG. 1. The random walker (filled triangle) hops to adjacent
sites when it is away from the bridges. Strong links are shown by
horizontal lines, intact bridges are depicted by arcs, and the absence
of a link indicates a burnt-bridge.

*—o—o oo

©2005 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.72.046104

T. ANTAL AND P. L. KRAPIVSKY

assumed to be equal. The first burning event, however, effec-
tively generates the bias—if the first burning event has hap-
pened when the bridge was crossed from left to right, the
walker will always be to the right of the last burnt-bridge.
Trapping of the walker between two burnt-bridges is impos-
sible since we assume that initially all bridges were intact.
For concreteness we assume that the first bridge is crossed
from the left. We set the time ¢ and the position x of the
walker to O at this instant.

The stochastic burnt-bridge model proposed by May et al.
[4] posits that an intact bridge is burnt with a certain prob-
ability p <1 when crossed by the walker. To avoid the trap-
ping of the walker, it is additionally postulated that when the
bridge burns while the walker attempts to cross it from the
right, the walker remains at the same position [4]. Hence,
trapping is impossible and the walker is drifting to the right.
Without loss of generality, we can set the lattice spacing and
the time step between successive hops to unity. Thus, if there
were no bridges (¢=0), the walker would undergo a random
walk with v=0 and D=1/2. For ¢ >0, the walker asymptoti-
cally behaves as a biased random walk, that is, the probabil-
ity of finding the walker at position x is a Gaussian centered
around (x)=vt with width (x*)—(x)>=2Drt as t— .

The model depends on two parameters—the burning
probability p and the density of bridges c. The distribution of
the bridges also affects the behavior of the random walker.
We mainly discuss two extreme distributions, periodic
(bridges are equidistant) and random (each link is a bridge
with probability ¢). In the periodic case the density ¢ attains
only inverse integer values (1,1/2,1/3,...) while when
bridges are placed at random the density can attain any value
0<c=1.

The burnt-bridge model (p=1) is much simpler than the
stochastic burnt-bridge model. For the burnt-bridge model,
the velocity has been computed in the realm of a continuum
approximation by May et al. [4]. The same paper argues that
for the stochastic burnt-bridge model with p<1 the velocity
scales as \p.

The continuum approximation becomes asymptotically
exact in the ¢—0 limit, yet in biological applications the
density c can be rather large and therefore the discreteness is
essential. Further, the burning probability p is usually nota-
bly smaller than 1, for instance p=0.1 was used in Ref. [13]
to fit the experimental data. Therefore, it is very desirable to
compute the velocity v(c,p) and the diffusion coefficient
D(c,p) over the entire range of ¢ and p. (The diffusion co-
efficient has not been studied in the earlier work, even for
p=1)

We computed v(c,p) for all 0<c<1, 0<p<1 and we
determined the diffusion coefficient when p=1. The final ex-
pressions for the velocity and the diffusion coefficient are
simple but the derivations are tedious, so here we summarize
our findings; the derivations are presented in the following
sections.

We start with the burnt-bridge model (p=1). In this case,
the velocity v(c)=uv(c,p=1) exhibits a remarkably simple
dependence on the bridge density (Fig. 2)
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FIG. 2. Velocity of the walker in the original (solid) and in the
modified (dashed) burnt-bridge model, for random and periodic
bridge distributions.

© c periodic (1)
o= ¢/(2—-c) random.

In the ¢—0 limit we recover the expressions computed in
Ref. [4] in the realm of continuum approximation. Unexpect-
edly, the continuum approximation is exact in the periodic
case; for random locations, the continuum approximation
gives v(c)=c/2, which is only asymptotically exact. [For ¢
=1, that is, for the path-avoiding walk, one should get v=1,
so the continuum approximation v(c)=c/2 could not be ex-
act. ]

The diffusion coefficient also depends simply on ¢ for
periodically and randomly positioned bridges

1
5(1 - periodic
D(c)= 2
(c) N ) (2)
————— random.
2(1-c¢/2)?

The diffusion coefficient monotonously decreases as ¢ in-
creases (see Fig. 3) and D(1)=0, since on a lattice fully
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FIG. 3. Diffusion coefficient in the original (solid) and in the
modified (dashed) burnt-bridge model, for random and periodic
bridge distributions.
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covered by bridges, the walker moves deterministically. The
diminishing nature of D(c) has apparently been observed ex-
perimentally in Ref. [13]. Intriguingly, Eq. (2) gives
Dper(+0)=1/3 [Dyy(+0)=3/2], which is smaller (larger)
than the “bare” diffusion coefficient Dy,,.=1/2 that charac-
terizes diffusion on the one-dimensional lattice without
bridges. This sudden jump of the diffusion coefficient occurs
when the density becomes positive. The reason is that any
positive ¢ (irrespective of however small it is) makes a last-
ing influence on the fate of the walker, which is forced to
remain to the right of the last burnt-bridge. Thus, the very
rare burning events substantially affect the diffusion coeffi-
cient.

The details of the walker dynamics at the boundary of a
burnt-bridge affect the velocity and the diffusion coefficient.
To illustrate this assertion, recall that in the framework of the
burnt-bridge model the walker at the boundary of a burnt-
bridge always moves to the right. Another natural definition
is to allow an attempt to cross the burnt-bridge—the attempt
fails and the walker remains at its position. In other words,
the walker next to a burnt-bridge either stays at the same
position or moves to the right with the same probability 1/2
during the next time step. The velocity for this modified
burnt-bridge model is

o(e) = {c/(l +c¢) periodic 3)

cl2 random.

The continuum approximation again manages to get one an-
swer right—now it is exact in the random case and approxi-
mate in the periodic case.

The diffusion coefficient for the modified burnt-bridge
model is

11 1 i
= - = eriodic
31+c 6(1+c? P
D(c) = 4)
3, 7 3
—c"——c+ < random.
8 4 2

Perhaps the largest difference between the two models is that
in the realm of the modified burnt-bridge model the walker
never moves deterministically—even when c¢=1 it moves
diffusively although the diffusion coefficient is small,
namely it is 4 times smaller than the bare diffusion coeffi-
cient. Not surprisingly, the quantitative predictions of the two
models are substantially different when c is large (see Figs. 2
and 3).

For the stochastic burnt-bridge model, we succeeded in
computing velocity for periodically located bridges. The ve-
locity reads

cp 2-p+V

v(e,p) = )

cp+2-pp(l-c)+V’

where we used the shorthand notation

_p2-pi-0)] J 4e
V= 5 { 1+ 1+p—(2—p)(l—c)2}'

For p=1, Eq. (5) agrees with already known result v=c [see
Eq. (1)]; for c=1 (the lattice fully covered by bridges), the
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FIG. 4. The velocity v(c,p) vs ¢ (for p=1,1/2,1/4,1/8, top to
bottom) and p (for ¢=1,1/2,1/4,1/8, top to bottom) in the sto-
chastic burnt-bridge model. The lattice is periodically covered by
bridges. The symbols are the results of numerical simulations.

velocity is given by the following neat expression:

p+\p(2-p)
—

v(1,p) = (6)
From Eq. (5) (see also Fig. 4) one finds the asymptotics
p) c when ¢ < p o
ver Vep/2 when p <c.

For c¢<p, the distance between neighboring bridges is
large. Thus, the walker typically crosses the next bridge sev-
eral times and hence almost all bridges get burnt. Therefore,
the p=1 results ought to be recovered. Equation (7) shows
that this is indeed correct in the periodic case; in the random
case (where we do not know an exact solution) we similarly
expect v(c,p)=c/2 when ¢<p. In the complimentary limit
p<<c, the walker on average makes many steps before the
burning occurs, and it is intuitively obvious that we can
renormalize c¢—1 and simultaneously p—cp. Hence,
v(c,p)—v(1,cp) when p<<c, and therefore the asymptotics
given in (7) can also be extracted from the simple solution
(6).

Another interesting and experimentally accessible quan-
tity is the fraction of bridges left intact by the walker. In the
long time limit it is given by

Vep+2-p

le,p)=1- (8)

cV+2-p’

Figure 5 shows that the fraction of intact bridges is a de-
creasing function of p for fixed c¢ (this is intuitively obvious)
and an increasing function of ¢ for fixed p. This latter feature
is understood by noting that on average a bridge is visited
more often when the density of bridges gets smaller.
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FIG. 5. The fraction of intact bridges, I(c,p) vs ¢ (for p
=1/4,1/16,1/64,1/256, from bottom to top), and vs p (for ¢
=1,1/4,1/16,1/64, from top to bottom) in the periodic case of the
stochastic burnt-bridge model.

III. BURNT-BRIDGE MODEL (p=1)

Here, we derive the results presented in the previous sec-
tion for the burnt-bridge model (p=1). We consider periodi-
cally (equidistant locations) and randomly positioned
bridges. These are the two most interesting cases, although
the formalism can be straightforwardly extended to the gen-
eral class of bridge positionings where the distances between
neighboring bridges are uncorrelated.

A. Velocity and diffusion coefficient

At time =0 the walker is at site x=0, the right end of the
only burnt bridge, and all the other bridges are intact. The
walker successively crosses the intact bridges, which imme-
diately turn into burnt bridges. Instead of the original walker,
it proves convenient to consider an equivalent walk whose
position at time ¢ is on the right end of the last burnt bridge.
This walk is still discrete in space and time, but the step
length is now equal to the distance between successive
bridges, and the time between the steps is at least as large as
the step length.

The following derivation is essentially the discrete time
version of the so-called continuous time random walk
(CTRW) [14,15]. This title refers to the continuous nature of
the waiting time distribution, while in our model the discrete
nature of time is essential, and therefore we present the com-
plete derivation of the necessary results. Even though the
equivalent walk always steps to the right, the derivation is
the same as for a general walk which can step in both direc-
tions; hence, we present a general derivation. Note that the
following derivation requires all the moments used below to
be finite, which is indeed the case for the burnt-bridge
model.

We denote by W (&, 7) the probability that the equivalent
walk makes a step of length ¢ after waiting 7 units of time.
Let W (x, 1) be the probability that the walk arrives at site x at
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time ¢ and at the jth step. Since the walk starts at site O at
time 0, we have W ,(x,7)=W(x,7). The probability ¥;(x,t)
satisfies the recurrence formula

V)= > 2V, (x=xt—t)PE1). (9

x'=—00 ¢'=0

Using the generating function (the discrete version of the
Fourier-Laplace transform)

o

Viqu)= 2 2 V(x.0q%, (10)

x=—% t=0

we transform the convolution (9) into the product

The probability Q(x,t) of arriving at site x at time ¢ (after an
arbitrary number of steps) is

Q(-x’t)zquj(-xat)' (12)
Jj=0

The corresponding generating function can be written in a
closed form

. ‘ 1
O(q.u) = EO [W(g.u)} = TV (13)

The probability P(x,?) that the walk is at site x at time ¢
can be obtained by noting that, in order to be at site x at time
t, the walk has to arrive at site x not later than at time ¢ and
has to stay there until . Hence

P(x,t)= E d)(t_t’)Q(x’t,)’ (14)

t'=0

where () is the probability that the walk does not move for
a time interval ¢

pt)=1- 2 W(1"). (15)

t'=0

The probability W(¢) that the walk makes at least one step
during the time interval ¢ is obtained by summing over all
possible step lengths

V()= D (1. (16)

Using Eq. (15), we compute the generating function of ¢(z)
1-P(u)

- (17)

Pu) =
The generating function of P(x,) is now easily derived since
Eq. (14) is a convolution

1-P(u)
(1=u)[1-V(q,u)]

P(q.u) = pu)Q(q,u) = (18)
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In order to study the long-time behavior of the walk, we
introduce the new variables y and € via g=¢'” and u=e"¢.
The goal is to calculate W(7y,€) up to the second order in y
and €, from which we will infer the asymptotic behavior.
First, we note that even though the probability W(x,?) is not

separable in general, it can always be written as the product
W(x,1) = Sx)P(t|x), (19)

of the probability S(x) that the next step has length x (dis-
tance to the next bridge) times the conditional probability
W(t|x) that the next step happens after ¢ waiting time, given
that the length of this step is x. Now, we calculate the gen-
erating function with respect to time in the €— 0 limit. Plug-
ging (19) into

V(x,e) = X, P(x, e,
=0

and expanding in € up to the second order, we obtain

V(x,e)=S (X)<1 -+ g[tz]x> .

where the moments of time are calculated at some fixed x
length of interval

[, = > "V (). (20)
=0

Performing the Fourier transform of W(x,u) and taking the
y—0 limit, we arrive at

’}’2

&
V(v =1-elt]) +inx) - iexxlr]) + 5<[t2]x> - 5<x2>,

up to second order in y and e. We also need to calculate
W (u), the generating function of W(¢) defined by Eq. (16). It
is sufficient to know it only up to first order in €

V(e =1-e(r]y.

Plugging the above results into Eq. (18), we find that up
to first order in both y and €, the quantity W(y, €) attains the
form P(y,e)=(e—iyv)~" with the velocity

W
([l
Calculating P(7y, €) up to second order, and using the first-

order expression for e=~—iyv in the terms containing €7y and
€, we arrive at

(21)

1
P(%f)=m, (22)
with the diffusion coefficient given by
_ &) (Pl? Gl
Pty

Since Eq. (22) is the Laplace-Fourier transform of the Gauss-
ian
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1 (x—vr)?
P(x,t) = ———=—=exp) — , (24)
) V4Dt p{ 4Dt }

we conclude that P(x,f) is indeed Gaussian in the long-time
limit. It is centered around a mean value {x)=vt with a mean-
square deviation (x?)—{x)?>=2Dt, with v being the velocity of
the walk and D being the diffusion coefficient. Note that this
result applies to any random walk—discrete or continuous—
where the steps are uncorrelated and all of the moments used
in Eq. (23) are finite. Specifically, it applies to the burnt-
bridge model (p=1) if the distances between bridges are un-
correlated.

1. Special cases

Consider first equidistant bridges separated by distance €.
Then, S(x)=46,, and therefore the first two moments are
(x)=¢ and (x*)=€2. The velocity (21) and diffusion coeffi-

cient (23) simplify to
_ [P -
nan 2 [k
Using the moments of time computed in Appendix A [Egs.
(A5) and (A9)], we arrive at Egs. (1) and (2).
For randomly distributed bridges, the probability that the

walk makes a step of length x, that is, the probability of
having two neighboring bridges at distance x>0, is

S(x)=c(1-c)". (25)

We again use Egs. (A5) and (A9) for the moments of time,
and we also need the first four moments of x

v

W=,
C
W)=,
()= —6_6CC3+62,
(e = 24 - 36¢ :414C2 - ' 26)

Using these expressions in Egs. (21) and (23), we obtain the
velocity and the diffusion coefficient given by Egs. (1) and
(2), respectively.

Finally, consider the bimodal distribution

S(.X) =q 5x,€] + CI25X,€23 (27)

with two possible separations between the bridges, €, and €5,
occurring independently with respective probabilities ¢; and
q, (of course, ¢;,4,=0 and g, +¢,=1). In this situation, the
velocity (21) becomes

it gl
0163+ 05

and the diffusion coefficient (23) turns into
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FIG. 6. The diffusion coefficient D(c) for the random and peri-
odic bridge locations. Results of the simulations are also displayed
for comparison. The arrow points to the theoretical value D=1/2
—1/7r corresponding to a random walk with a reflecting boundary.
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D=

(28)

For the system with bimodal bridge distribution (27), and
apparently for an arbitrary uncorrelated positioning of
bridges, the diffusion coefficient exceeds that of the corre-
sponding periodic system at the same bridge density. This
general assertion is easy to verify in a particularly interesting
case when the density of bridges vanishes. Taking the limit
€,,£,— 0, and Kkeeping the ratio €,/{,=r(<1) constant, we
recast Eq. (28) into

D=

1 r+ 2 5q,7 4+
_+<611 f]z)[_% @ 49 9> (29)

2 c11’”2"‘42 66]1”2"‘612 q1r+q;

A straightforward analysis of Eq. (29) shows that the diffu-
sion coefficient is larger than 1/3, which is the diffusion
coefficient in the periodic case (¢;=0 or ¢,=0). From Eq.
(29) one finds that for a<<1, the maximal diffusion coeffi-
cient, approximately D= 213_(]),,—2’ is achieved when the system
is predominantly composed of shorter segments ¢, namely
when ¢, =~ r*/2. Therefore, a “superposition” of two equidis-
tant distributions, each characterized by the diffusion coeffi-
cient 1/3, may have an arbitrarily large diffusion coefficient.

2. Simulations

The velocity and the diffusion coefficient of the walker
are determined using the basic formulas v=(x)/t and D
=({(x?y—(x)?)/2t. Since the motion is self-averaging, simulat-
ing a single walker for a long time is sufficient to obtain the
velocity. To measure the diffusion coefficient, however, one
has to perform averages over several runs. In the case of
randomly distributed bridges, one also has to average over
the bridge distribution.

Figure 6 shows numerical results for the diffusion coeffi-
cient at various times. The convergence to the theoretical
predictions is slow when the density of bridges is small.
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During a short time interval the walker does not reach the
second bridge, and actually behaves as a simple random
walk with a reflecting boundary at the origin. Hence, the
probability of finding the particle at position x=0 is a
Gaussian centered around the origin, and the formal defini-
tion of the diffusion coefficient yields D=1/2-1/1r. For the
time intervals large compared to the time (of the order of c¢~2)
between overtaking successive bridges, the coarse-grained
motion becomes similar to a biased random walk with the
diffusion coefficient approaching the theoretical predictions:
D(+0)=1/3 in the periodic case and D(+0)=3/2 in the ran-
dom case.

B. Correlation function

A correlation function measured experimentally in Ref.
[13] is apparently proportional [16] to the probability C(r)
that the walker at the site x, will be at the same position time
t later.

As a warm-up, consider the extreme cases of the lattice
without bridges (¢c=0) and the lattice fully covered by
bridges (c=1). In the former case, the correlation function
obviously vanishes for odd 7, while for even ¢ it is given by
the well-known expression

C(21) = 2-2’<2;) ) (30)

Note that the correlation function decays algebraically in the
large time limit

1
CR2t) = —= as t— o, (31)
Vit
For the lattice fully covered by bridges the walker can move
only to the right, the probability of not making a step is 1/2,
and therefore the correlation function

C(h=2" (32)

is purely exponential.

In the general case 0 <c< 1, the walker cannot leave the
“cage” formed by two neighboring bridges. As always, we
consider the cage with sites x=0, ... ,€—1. For simplicity, let
us assume again that the initial position is x,=0. Rather than
considering the walker in the cage (0,€—1) with a special
behavior at x=0 and the absorbing boundary at x=+¢, one can
analyze the ordinary random walker in the extended cage
(—€,€) with absorbing boundaries at x=¢ and x=—¢. The
correlation function is merely the probability that this ordi-
nary random walker will be at x=0 at time 7 and will remain
inside the extended cage in intermediate times. This is a
classic problem in probability theory whose solution is a
cumbersome sum of expressions like (30) with alternating
(positive and negative) signs. Therefore, we employ a con-
tinuum approximation which becomes asymptotically exact
when €>1 (and accordingly c=€~'<1). The solution is an
infinite series of exponentially decaying terms. Keeping only
the dominant term, we obtain
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2
C(t)y—c exp{— WZTCI} (33)

as t— o0, More precisely, the asymptotics (33) is valid when
t>c¢72. In the regime 1 <t<<¢72, the dominant asymptotics is
the same as in the ¢=0 case, that is, C(f) ~¢ 2. It is there-
fore understandable that a formula

2
Cit)=(1+0)7'2 exp{— 7’%:} (34)

fits experimental data well (and indeed it does [13]). Yet, the
true asymptotic behavior, Eq. (33), is purely exponential
without the power-law correction of Eq. (34).

C. Modified burnt-bridge model

The precise definition of the walker dynamics at the
boundary of the burnt bridge affects the results. We assumed
that the walker at the boundary of the burnt bridge always
moves to the right. Recall, however, that in the stochastic
version (p<<1), when the walker attempts to hop over the
bridge from the left and the bridge burns, the walker actually
remains at the same position. This suggests modifying the
rule at the boundary of the burnt bridge—the walker either
moves one step to the right or remains at the same position if
it has tried the forbidden move across the burnt bridge. This
defines the modified burnt-bridge model.

The calculation of v(c) and D(c) goes along the same
lines as for the original burnt-bridge model (Sec. III A). The
only change is that instead of Egs. (A5) and (A9) one should
use the moments of time [computed in Appendix A] which
are given by Egs. (A10) and (A13). This leads to the results
presented in Sec. II and displayed in Figs. 2 and 3.

For c=1, the diffusion coefficient of Eq. (4) is the same
D(1)=1/8 in both the periodic and the random case. This
particular result also follows from an independent calculation
which we present here as it provides a good check of self-
consistency. The key simplifying feature of the lattice fully
covered with bridges is that the walker never hops to the left.
The position x, of the walker after ¢ time steps satisfies

X, probability 1/2
+1 = . (35)
x,+ 1 probability 1/2,

from which

() =)+ (36)

and
W)=+ ey (7)

The variance o,=(x*)—(x,)’ satisfies a simple recurrence

1
=0+, 38
O =0y 4 (38)
which follows from Egs. (36) and (37). The initial condition
xo=0 implies (xy)=0,=0. Solving (36) and (38) subject to
these initial values, we obtain
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1 1
(x,) = Et’ g, = Zl‘. (39)

The velocity and the diffusion coefficient can be read off the
general relations (x,)=vt and ¢,=2Dt. Thus, we recover the
already known value v(1)=1/2 and obtain the diffusion co-
efficient D(1)=1/8 (which happens to be 4 times smaller
than the bare diffusion coefficient).

IV. STOCHASTIC BURNT-BRIDGE MODEL (p <1)

Apart from randomness in hopping, the stochastic burnt-
bridge model has an additional stochastic element—crossing
the bridge leads to burning with probability p, while with
probability 1—p the bridge remains intact. Recall that to
avoid the possibility of trapping we additionally assume that
if the particle attempts to cross the bridge from the right and
the bridge burns, the attempt is a failure and the walker does
not move. We have succeeded in computing v(c,p) in the
situation when the bridges are equidistant. We again employ
an approach involving auxiliary functions 7T(x) [see Appen-
dix A] and L(x) defined below. Perhaps the entire problem
can be treated by a direct approach discussed in Appendix B,
but that approach is more lengthy and we have only suc-
ceeded in computing the velocity for c=1 that way.

We must determine the average position of the first bridge
that burns, and the average time of that event. The walker
starts at x=0, but it is again useful to consider a more general
situation when the walker starts at an arbitrary position x.
Denote by L(x) the average position of the walker at the
moment when the first bridge burns. The walker hops x
—x=+1, and therefore

L(x)= %[L(x -+ Lx+1)], (40)

when x#nf€-1,nf with n=1,2,3,.... On the boundaries of
the bridges, the governing equation (40) should be modified
to account for possible burning events

(41a)

Ln€+1)+ (1 -p)L(n€ -1)+pnt

L(n€) = 5

(41b)

Equation (40) shows that L(x) is a linear function of x on
each interval between the neighboring bridges, i.e.,

L(x)=A,+ (x-n{)B,, (42)
for n€ <x<(n+1)¢-1. Plugging (42) into (41a), we obtain
A,_1+4€B,_ =1 -p)A,+pnt. (43)

Similarly, Eq. (41b) reduces to
Ay=B,+(1-p)[A, 1+ (€ -1)B, ]+pnt.  (44)

Using (43), we get rid of the Bs in (44) and obtain
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4 +(2-p)€
A, —2gA, +A,. =— 1": —pnel%. (45)

Here, we used a shorthand notation

_p2-pt-1)+2

(46)
2(1-p)
The recurrence (45) admits a general solution
A,=nl+a+AN +AN", (47)

where A,=nf{+a with a=€/[p+(2-p)€] is a particular so-
lution of the inhomogeneous equation (45); the remaining
contribution A N} +A_N" with

A.=g+vVgi-1 (48)

is the general solution of the homogeneous part of (45).

If the walker is initially located far away from the origin,
x> ¢, the first bridge would burn somewhere in its proximity,
that is L(x) ~x. This in conjunction with (42) led to A,,—n{
=O0(1) when n>1. On the other hand, the general solution
(47) grows exponentially since \,>1. This shows that the
corresponding amplitude must vanish: A,=0. Since L(x) is
constant on the interval 0 <x<{-1, we have B,=0, or [see

(43)]
Ag=(1-p)A, +pt. (49)

By inserting Ag=a+A_ and A;=€+a+A_\_ into (49) and
solving for A_, we get

__t-pa
T 1-(1-pn

Return now to the situation when the walker starts at the
origin. The average displacement of the walker after the first
burning event is {(x)=L(0)=Ay=a+A_, or

_ (2-p)t
‘p+(2—p>€[ *1—(1—p>x_]‘

In the limiting cases p=1 and €=1 we indeed recover (x)
=¢ and (BY), respectively.

The second part of the program is to determine the aver-
age time when the first burning occurs. Again, we choose to
investigate a more general quantity 7(x). It satisfies Eq. (A2)
when x#nf—1,n€. On the boundaries of the bridges, the
governing equations become

T(n€-2)+(1-p)T(nt) N
2

(50)

(x) (51)

T(n€-1)= 1, (52a)

Tn€+1)+ (1 =p)T(n€-1) .
2

We seek a solution of (A2), (52a), and (52b) which is
invariant under the transformation x+<« —x, and periodic in
the large x limit. A solution to Eq. (A2) is quadratic in x, viz.,
—x2+Yx+Z with arbitrary Y,Z. The same holds in our situa-
tion except that solutions in different intervals between the
neighboring bridges differ. Thus

T(nt) = 1. (52b)
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Tx)=—(x—n)’+(x-nl)Y,+2Z,. (53)
Plugging (53) into (52a) and (52b), we obtain
Y1+ 2, =(1=p)Z,+ €,

Z —-1-Y
=7+ (- 1Y, - (1)
l-p
Using the first equation, we exclude the Ys from the second,
which turns into a recurrence

+(2-p)¢
1 =287+ Zyur + ep—l( PE_o (se)
-p
whose general solution read
¢
Z,=—+ZN{+Z\". (55)
p
The symmetry x+« —x leads to Y,=0, or
Zo=(1-p)Z, + €2 (56)

The periodicity in the large-x limit implies that Z, remains
finite for large n. The exponentially growing part of the so-
lution should therefore vanish, Z,=0. Thus, Zy=Z_+{/p and
Z,=Z_N_+4/p. By inserting these relations into (56), we ob-
tain

-1
- -p_

Thus, the average time in the original problem is given by
(t)=T(0)=Z,, or

(57)

¢ €-1)
Hy=—4—"—""—.
p 1-(1-p)r_
In the limiting cases p=1 and €=1 we indeed recover (z)
=¢? and (ty=p~' [Egs. (A5) and (B2)], respectively. Finally,
the velocity is

(58)

:@= p 1-(1-pA_+(2-p)t
@ p+Q-p1-(1=-pr_+p-1)

Using (48), one can transform (59) into (5).

In the initial state all bridges are intact, and a fraction of
them remains intact as the walker moves along. The walker
passes on average (x)/{ bridges per one burnt bridge. Hence,
the fraction / of bridges which forever remains intact ap-
proaches

(59)

/€ -1 ¢
il SR (60)
(€929 (x)
in the long-time limit. Using Eq. (51), one recasts (60) into

Eq. (8).

The calculation of the diffusion coefficient seems to be
very challenging. For a system full of bridges (¢=1), how-
ever, the walk is somewhat analogous to the p=1 (and ¢
<1) case, and D might be possible to derive using the ap-
proach presented in Sec. IIl A. The complete analysis ap-
pears to be very cumbersome, but if p—0 in addition to ¢
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FIG. 7. Numerical results for the diffusion coefficient for a sys-
tem full of bridges (c=1) as function of p for several times. The
arrow points to the analytic result D(p—0)=1/4.

=1, the successive burnt bridges are (on average) separated
by large gaps and therefore one can employ a continuous
treatment. Following the steps described in Sec. III A, we
obtained D=1/4. This prediction agrees with simulations.
Interestingly (see Fig. 7), D is a nonmonotonous function of
p-

Solving the stochastic burnt-bridge model for randomly
distributed bridges does not look possible in the realm of the
above framework. Indeed, instead of working with ordinary
deterministic recurrences like (45), one has to tackle stochas-
tic recurrences (see Appendix C).

V. DISCUSSION

Our current understanding of the stochastic burnt-bridge
model is certainly incomplete—only the periodic case is
somewhat tractable, albeit even in this situation we do not
know how to compute various interesting quantities like the
diffusion coefficient or the probability that in the final state
two nearest burnt bridges are separated by k intact bridges.

In many biological applications, molecular motors move
along a homogeneous polymer filament (kinesin and myosin
are classical examples [5]), while in other applications the
track is inhomogeneous (this particularly happens when mo-
tors move along DNA). It would be interesting to study the
burnt-bridge model when in addition to the disorder related
to location of the bridges there is the disorder associated with
hopping rates. Earlier work on random walkers under the
influence of a random force (see Refs. [17,18] and references
therein) and recent work motivated by single-molecule ex-
periments on motors moving along a disordered track [19,20]
may be useful in that regard.

Finally, we notice that the appealing simplicity of the
burnt-bridge model suggests that in addition to mimicking
molecular motors it may find various other applications. For
instance, there is a connection between the stochastic burnt-
bridge model and front propagation in autocatalytic reactions
[4]. This connection inspires the analysis of the burnt-bridge
model on higher dimensions, e.g., on two-dimensional lat-
tices where a similar model [21] was utilized to mimic the
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intracellular signaling mechanism by which extracellular sig-
nals are converted into cellular responses [22].
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APPENDIX A: CALCULATION OF [f], AND [#2], FOR AN
INTERVAL

Let ¢ be the first passage time, namely, the time it takes for
the simple random walk in an interval [0, €] starting at site O
to reach site ¢ for the first time, with a reflecting boundary at
site 0. Here, we compute the first two moments, [r], and
[#*];, of this random variable. We will present an elementary
approach that does not require the calculation of the com-
plete first passage probability [23]. (The calculations in Sec.
IV can also be considered as a generalization of this
method.)

The process can be understood in terms of a random vari-
able #(x), which is the time it takes to reach site € if the
walker starts at site x. As the walker from site x steps equally
probably to either side

tx-1)+1 pr ility 1/2
<)={( Jr1 provabiiy I (A
t(x+1)+ 1 probability 1/2,
and for the average time T(x)=[#(x)],, we arrive at the recur-
sion formula
1
T(x):E[T(x—1)+T(x+l)]+l. (A2)
This master equation holds for 1 <x=<+{-1, while for x=0 it
should be replaced by

T0)=T(1)+1, (A3)

since when the walker is at site 0, it always makes a step to
the right. The recurrence (A2) and (A3) is supplemented by
the boundary condition 7T(€)=0.

Equation (A3) can be rewritten in the general form (A2) if
T(=1)=T(1). Further, one finds that Eq. (A2) holds for x
=—1 if T(-2)=T(2), and generally Eq. (A2) applies for all
|x|<€-1. Hence, we seek a solution invariant under the
transformation x<« —x; the absorbing boundary conditions
are T(x€)=0. [Numerous examples of analyzing equations
like (A2) with absorbing boundary conditions are described
in Ref. [23].] The solution is very neat

T(x) = +x)(€-x), (A4)
and in particular
(], =T(0) = €. (A3)

For the derivation of the second moment, it is again con-
venient to consider T,(x)=[r*(x)];, which is the average
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square time to reach site € for the first time if the walker
starts at position x. From Eq. (A1), one obtains the governing
equation for | =x<{-1
1

O:EDZTz(x)+T(x—1)+T(x+1)+1, (A6)
where D*F(x)=F(x—1)-2F(x)+ F(x+1) is the shorthand no-
tation for the discrete derivative of the second order. For x
=0 we have

T,(0) = Ty(1) + 27(1) + 1. (A7)

We can again seek a solution to Eq. (A6) satisfying the
symmetry requirement x<«<—x and the absorbing boundary
conditions are T,(+£)=0. Using Eq. (A4), we recast Eq. (A6)
into

DTy (x) =4x(x+ 1) — 4x +2 — 442, (A8)
which yields
T,(x) = %xz(x2 +2-60%) +[*],,
with
[, = %ez(sez -2). (A9)

The derivation of the moments for the modified burnt-
bridge model, where the hopping rule differs from the origi-
nal model only from site 0, follows the same lines. The new
rule affects only Eq. (A3), which now becomes 7(0)
=%[T(0)+T(1)]+ 1. This equation can be recast in the gen-
eral form (A2) if T(-1)=T(0), and overall the symmetry
T(x)=T(-x—1) allows us to reduce the problem to solving
(A2) subject to T(¢)=0 and T(—€—1)=0. The solution T(x)
=(€+1+x)(£-x) yields

[f]o=T(0)= € +1). (A10)

For the second moment the governing equation is given
by Eq. (A6) for 1<x=<¢-1, and for x=0 it is
T5(0) + T5(1)

T5(0) = 5

+T(0)+T(1)+1. (A11)

The boundary condition is T,(€)=0.
A solution of Eq. (A8) invariant under the transformation

x+——x—1 and satisfying the absorbing boundary conditions
T2(€)=T2(—€— 1)=0 iS
D’Ty(x) =4x(x+ 1) +2 - 4(£> + 0), (A12)

which is solved to yield
1
Ty(x) = g(x —Dx(x+ D +2)+[1-2(€2+ ) ]x(x + 1)

+[1,,

with

[, = %€(€+ D[5€(€+1)-1]. (A13)
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APPENDIX B: DIRECT CALCULATION OF v(1,p)

Here, we present an alternative, direct calculation of the
velocity for a lattice fully covered with bridges (c=1). At
each time step, the walker makes a move, so after 7 time
steps all bridges remain intact with probability (1-p).
Hence, the first burning event would happen at time (r+1)
with probability

B(1)=p(1-p)', (B1)
and thus the average time till the first burning event is
[1=2 (t+ Dp(1-p)'=p". (B2)
=0

We also need the probability distribution P(x,z) of the
position of the walker. As described earlier, we can consider
the unconstrained random walk on the infinite line, and then
“fold” it at the origin to give

P(x,t) = {PO(x’t) + Py(—=x,t) forx>0

Py(0,2) (B3)

for x=0,
with Py(x,7) being the probability distribution of the uncon-
strained walker. When the walker starts from the origin at
time ¢=0, this probability is
t
27 t+x | fort+xeven
Py(x,1) = - (B4)
2
0 for t+x odd.
The probability that a bridge burns at time (r+1) when the
walker hops from site x is P(x,#)B(r), and the total probabil-
ity is obtained after summing over all ¢

B(x) =2, P(x,)B(?). (B5)
=0

If the walker is hopping to the right when the burning
occurs, the move is completed; otherwise, the walker re-
mains in its position. Both of these alternatives occur
equiprobably when x>0, while when x=0 the walker surely
hops to the right. The average final position of the walker is
therefore

(xy=B0) + 2, (x + %)B(x). (B6)
x=1

Using (B3) and (B5), and the identity ¥,-B(x)=1, we trans-
form (B6) into

l 1 oo o0 oo
(== +=2 Py0.0B1) + 2 x| 2 Po(x,0)B(1).
2 25 x=—0 =0
The first sum reduces to
Pw 2k<2k) P
~2.a =, (B7)
2% k) 2\1-4d*

where a=(1-p)/2. Next, we rewrite the second sum as
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2 BOV(), V()= 2 |x|Py(x.1),

t=0 x=—t

and simplify V(7) by separately considering even and odd
times

k
2k
22kl N |m|< ) for 1 =2k
k+m

m=—k
V(t) = k+1
2k+1
272> |m| for t=2k+1.
— k+m

Evaluating the sums (by hand or with the help of MAPLE),
one obtains

2k
272k (k4 1) for 1 =2k
k+1
V(t) =
2k+1
27%(k+1) for t=2k+ 1.
k+1

Putting this into 2,=,B(r)V(z), we find that the sum is equal
to

[

ZPE {aZk(k+ 1)(/{2-:(1 ) + a2 (ko + 1)<2k+ 1 )}

k=0 k+1
2a*+a
=2p —(1 2 | (BS)

Combining (B7) and (B8), we obtain the average displace-

ment
1 1 /2-
W=+ (B9)
2 2 p

and therefore v=(x)/[f]=p{x) is indeed given by (6).

APPENDIX C: STOCHASTIC BURNT-BRIDGE MODEL IN
THE CASE OF RANDOMLY POSITIONED BRIDGES

The formalism detailed in Sec. IV for the periodic loca-
tion of bridges to the situation formally applies to the situa-
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tion when bridges are arbitrarily distributed. Let (€,—1,4€,),
(€,+€,—1,€,+¢,), etc. be bridge locations. Away from
bridges the governing equation (40) is valid, while on the
boundaries the modified equations are almost identical to
(41a) and (41b); the only exception is that n€ should be
replaced by L,=¢€;+---+{,. The average position of the
walker L(x) is again a linear function of x on each interval
between neighboring bridges; for L,<x<L,+¢,, -1

L(x)=A,+(x-L,)B,.
The analogs of Egs. (43) and (44) are
Bn—l = [_ An—l + (1 _p)An +an]/€n7

(CD)

An = Bn + (l _p)[An—l + (fn - l)Bn—l] +an'

Using the first equation, we exclude the Bs from the second
and thereby recast it into a recurrence

An+1 An—l_ An |:
-+
1-p

+ L[z +L 1_p]
b u €n+l gn .

1 (1- p)z}
2 PR
.t e p2-p)+ + +p

€n+l en

(C2)

In the interesting case when the €’s are independent, iden-
tically distributed random variables, one must solve the sto-
chastic inhomogeneous recurrence (C2). Even a homoge-
neous version of Eq. (C2) is analytically intractable. The
additional challenging feature of the inhomogeneous recur-
rence (C2) is infinite memory manifested by factor L,; as a
result, it is not clear how to find a particular solution of Eq.
(C2) which is required if one wants to reduce the problem to
solving a homogeneous version of Eq. (C2).

The case of weak disorder is probably exceptional, e.g., it
should be possible to compute the growth rates \,. One can,
however, avoid such a lengthy analysis by noting that in the
present context the condition of weak disorder implies that
bridges are located almost periodically and their concentra-
tion is small (c<<1). Assuming additionally that the bridge
burning probability is not anomalously small, so that c<<p,
an argument presented after Eq. (7) shows that in the leading
order the burnt-bridge model must be recovered. Thus, v
~c and D=~ (1-c?)/3.
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